RAM
Random-access memory (RAM) is a form of computer data storage. Today, it takes the form ofintegrated circuits that allow stored data to be accessed in any order with a worst case performance of constant time. Strictly speaking, modern types of DRAM are therefore not random access, as data is read in bursts, although the name DRAM / RAM has stuck. However, many types of SRAM, ROM, OTP, and NOR flash are still random access even in a strict sense. RAM is often associated with volatile types of memory (such as DRAM memory modules), where its stored information is lost if the power is removed. Many other types of non-volatile memory are RAM as well, including most types of ROM and a type of flash memory called NOR-Flash. The first RAM modules to come into the market were created in 1951 and were sold until the late 1960s and early 1970s. However, other memory devices (magnetic tapes, disks) can access the storage data in a predetermined order, because mechanical designs only allow this.
CACHE MEMORY
The cache is a small amount of high-speed memory, usually with a memory cycle time comparable to the time required by the CPU to fetch one instruction. The cache is usually filled from main memory when instructions or data are fetched into the CPU. Often the main memory will supply a wider data word to the cache than the CPU requires, to fill the cache more rapidly. The amount of information which is replaces at one time in the cache is called the line size for the cache. This is normally the width of the data bus between the cache memory and the main memory. A wide line size for the cache means that several instruction or data words are loaded into the cache at one time, providing a kind of prefetching for instructions or data. Since the cache is small, the effectiveness of the cache relies on the following properties of most programs:
- Spatial locality -- most programs are highly sequential; the next instruction usually comes from the next memory location. Data is usually structured and data in these structures normally are stored in contiguous memory loop.
- Short loops are a common program structure, especially for the innermost sets of nested loops. This means that the same small set of instructions is used over and over.Generally, several operations are performed on the same data values or variables.
ROM
Read-only memory (ROM) is a class of storage medium used in computers and other electronic devices. Data stored in ROM cannot be modified, or can be modified only slowly or with difficulty, so it is mainly used to distribute firmware (software that is very closely tied to specific hardware, and unlikely to need frequent updates).
In its strictest sense, ROM refers only to mask ROM (the oldest type of solid state ROM), which is fabricated with the desired data permanently stored in it, and thus can never be modified. Despite the simplicity of mask ROM, economies of scale and field-programmability often make reprogrammable technologies more flexible and inexpensive, so mask ROM is rarely used in new products as of 2007.
FLASH MEMORY
Flash memory is a non-volatile computer storage chip that can be electrically erased and reprogrammed. It is primarily used in memory cards, USB flash drives, MP3 players and solid-state drives for general storage and transfer of data between computers and other digital products. It is a specific type of EEPROM (electrically erasable programmable read-only memory) that is erased and programmed in large blocks; in early flash the entire chip had to be erased at once. Flash memory costs far less than byte-programmable EEPROM and therefore has become the dominant technology wherever a significant amount of non-volatile, solid statestorage is needed. Example applications include PDAs (personal digital assistants), laptop computers, digital audio players, digital cameras and mobile phones. It has also gained popularity in console video game hardware, where it is often used instead of EEPROMs or battery-powered static RAM (SRAM) for game save data. Flash memory is non-volatile, meaning no power is needed to maintain the information stored in the chip. In addition, flash memory offers fast read access times (although not as fast as volatile DRAM memory used for main memory in PCs) and better kinetic shock resistance than hard disks. These characteristics explain the popularity of flash memory in portable devices. Another feature of flash memory is that when packaged in a "memory card," it is extremely durable, being able to withstand intense pressure, extremes of temperature, and even immersion in water.
GRAPHIC CARD
A video card, video adapter, graphics accelerator card, display adapter, or graphics cardis an expansion card whose function is to generate output images to a display. Most video cards offer added functions, such as accelerated rendering of 3D scenes and 2D graphics, video capture, TV-tuner adapter, MPEG-2/MPEG-4 decoding, FireWire, light pen, TV output, or the ability to connect multiple monitors (multi-monitor). Other modern high performance video cards are used for more graphically demanding purposes, such as PC games.
SOUND CARD
A sound card (also known as an audio card) is an internal computer expansion card that facilitates the input and output of audio signals to and from a computer under control of computer programs. The term sound card is also applied to external audio interfaces that use software to generate sound, as opposed to using hardware inside the PC. Typical uses of sound cards include providing the audio component for multimedia applications such as music composition, editing video or audio, presentation, education and entertainment (games) and video projection. Many computers have sound capabilities built in, while others require additional expansion cards to provide for audio capability.
NETWORK INTERFACE CARD
Whereas network interface controllers were commonly implemented on expansion cards that plug into a computer bus, the low cost and ubiquity of the Ethernet standard means that most newer computers have a network interface built into the motherboard.
PLUG AND PLAY
In computing, plug and play is a term used to describe the characteristic of a computer bus, or device specification, which facilitates the discovery of a hardware component in a system, without the need for physical device configuration, or user intervention in resolving resource conflicts.
Plug and play refers to both the boot-time assignment of device resources, and to hotplug systems such as USB and Firewire.
SERIAL PORT
While such interfaces as Ethernet, FireWire, and USB all send data as a serial stream, the term "serial port" usually identifies hardware more or less compliant to the RS-232 standard, intended to interface with a modem or with a similar communication device.
Modern computers without serial ports may require serial-to-USB converters to allow compatibility with RS 232 serial devices. Serial ports are still used in applications such as industrial automation systems, scientific instruments, shop till systems and some industrial and consumer products. Server computers may use a serial port as a control console for diagnostics. Network equipment (such as routers and switches) often use serial console for configuration. Serial ports are still used in these areas as they are simple, cheap and their console functions are highly standardized and widespread. A serial port requires very little supporting software from the host system.
PARALLEL PORT
A parallel port is a type of interface found on computers (personal and otherwise) for connecting various peripherals. In computing, a parallel port is a parallel communication physical interface. It is also known as a printer port or Centronics port. The IEEE 1284 standard defines the bi-directional version of the port, which allows the transmission and reception of data bits at the same time.
UNIVERSAL SERIAL PORT
Universal Serial Bus (USB) is a specification to establish communication between devices and a host controller (usually a personal computer), developed and invented by Ajay Bhatt, while working for Intel. USB has effectively replaced a variety of interfaces such as serial andparallel ports.
Unlike the older connection standards RS-232 or Parallel port, USB connectors also supply electric power, so many devices connected by USB do not need a power source of their own.
FIREWIRE PORT
The IEEE 1394 interface is a serial bus interface standard for high-speed communications andisochronous real-time data transfer, frequently used by personal computers, as well as in digital audio, digital video, automotive, and aeronautics applications. The interface is also known by the brand names of FireWire (Apple), i.LINK (Sony), and Lynx (Texas Instruments). IEEE 1394 replaced parallel SCSI in many applications, because of lower implementation costs and a simplified, more adaptable cabling system. The 1394 standard also defines a backplaneinterface, though this is not as widely used.
Nearly all digital camcorders have included a four-circuit 1394 interface, though, except for premium models, such inclusion is becoming less common. It remains the primary transfer mechanism for high-end professional audio and video equipment. Since 2003, many computers intended for home or professional audio/video use have built-in FireWire/i.LINK ports, especially prevalent with Sony and Apple's computers. The legacy (alpha) 1394 port is also available on premium retail motherboards.
ETHERNET